Data Engineering Today: All About the Cloud

When “data engineer” first started becoming a vital role for tech companies, the world was a smaller, simpler place....


Answering Complex Usage Questions with Product Analytics

Measuring engagement with a business product is difficult. Users often spend hours per day in a business tool where...

Scott Castle avatar image Scott Castle

Subscribe to our blog

Sign up to get the latest news and developments in business analytics, data analysis and Sisense.

By submitting this form, I agree to Sisense's
privacy policy and terms of service.


Why Your BI and Analytics Platform Should be Cloud-Agnostic

In the early days of software development, applications were built to run on a single, compatible, physical machine. With...

Scott Castle avatar image Scott Castle

Go Beyond BI. You Need DI.
4 Ways to Take Data-Driven Business to the Next Level

Ask any business leader worth their salt if their business is data-driven and they’ll say “Of course we are.” ...

Jim Rich avatar image Jim Rich

What’s the Difference Between Business Intelligence and Business Analytics?

For your business to thrive, you need to know what’s working, what’s not, and how to improve. That much...

Elana Roth avatar image Elana Roth

Leveling Up to Custom Actionable Analytic Apps with Sisense BloX

As a Lead Analytics Developer working on Luzern’s Platform, I spend a good amount of time building and turning...

Guest avatar image Guest

Answering Deeper Data Questions with SQL, Python, and R Together

To understand how businesses in the future will create the most value with data, it helps to take a...

Tom O'Neill avatar image Tom O'Neill
dashboard design

最高の Dashboard 設計
プラクティス – 4つの基本方針

Dashboard 設計のためのベストプラクティスに従って効率的な Dashboard をビルドすることは、通常、要件の収集や、KPIの定義、データモデルの作成などが含まれる総合的な BI プロセスの中核です。しかし、適切な Dashboard 設計の重要性を低く評価すべきではありません。Dashboard 設計が不十分だと、有用な情報や洞察を伝えることができず、データがさらに理解しづらくなることもあります。 優れたBI Dashboard設計をご紹介します: 複雑なものを簡単に:大量の情報、常に変化する多くのデータ、様々な分析ニーズや質問があります。この複雑さをすべて克服してシンプルにする必要があります。明確に答えを導く:データをビジネスのコンテキストに結びつけ、利用者の問いに答えることができるようにする必要があります。Dashboard の視覚的レイアウトがこの解決に重要な役割を果たします。データの意味を表現:選択したデータ視覚化では、抽出したいデータや情報を正しく表示する必要があります。必要に応じて詳細を表示:各視聴者が必要としているデータを過不足なく利用できるようにする必要があります。より細かいデータを見たいと思っているユーザーもいれば、概要だけで満足するユーザーもいます。 データ Dashboard によって要件や制限、目標は異なりますが、Dashboard の作成にほぼ常に関係性がある確かなガイドラインがあります。4つの基本方針と、Dashboard に適用する方法を見ていきましょう。 まず、設計が不十分な...

Ilan Hertz avatar image Ilan Hertz

A Product Designer’s Tips For Impactful Dashboard Design

If you Google “data visualization” or “dashboard design,” which is likely how you ended up reading this, you’ll probably...

Nadav Ben avatar image Nadav Ben

Delivering Data Security Across Your Organization

Quick question: does your company have data? Sorry, that one was probably too easy. How about this one: how...

Adam Blau avatar image Adam Blau

Business Intelligence vs. Automated Reporting: Which Do You Need?

Both automated reporting and business intelligence can help businesses perform better but in different ways. With automated reporting, organizations...

Shelby Blitz avatar image Shelby Blitz